• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
Sanità DigitaleSanità Digitale
    Facebook X (Twitter) LinkedIn Instagram Vimeo RSS
    lunedì, 16 Giugno
    Trending
    • Veeva R&D and Quality Summit 2025: la voce ai protagonisti
    • MioDottore Awards 2025: ecco i 43 medici più stimati d’Italia
    • Riabilitazione visiva post-ictus: via al progetto sperimentale SCRiCaViPS
    • ab medica porta dialogo e innovazione al Convegno Nazionale AIIC
    • BIO International Convention: il biotech italiano vola a Boston
    • Prénatal e Elty, gli alleati preferiti dai neogenitori
    • Il Gruppo IEO Monzino accelera sulla ricerca con l’HPC di Lenovo
    • “Let’s keep in touch!”: ecco cosa è successo
    Facebook X (Twitter) LinkedIn Instagram Vimeo RSS
    Sanità DigitaleSanità Digitale
    • Home
    • Cura
    • Tendenze
    • Riabilitazione
    • No Limits
    • Incontri
    Sanità DigitaleSanità Digitale
    Sei qui:Home»Cura»Il ruolo dell’AI nell’healthcare

    Il ruolo dell’AI nell’healthcare

    By Redazione BitMAT25 Febbraio 20205 Mins Read
    Facebook LinkedIn Twitter WhatsApp Telegram Reddit Email

    Imaging Medico, Patologia Digitale e Genomica alcune delle applicazioni dell’intelligenza artificiale

    AI intelligenza artificiale-Malattie neuromuscolari

    Le promesse dell’intelligenza artificiale in ambito sanitario sono maggiori rispetto a qualsiasi altro settore. Dal miglioramento dei risultati e delle cure per i pazienti all’espansione della portata delle competenze mediche fino alla riduzione dei costi: i possibili benefici sono enormi.

    Nonostante ciò, ad oggi l’impiego dell’intelligenza artificiale in campo sanitario è ancora superficiale rispetto alle potenzialità. L’industria sanitaria è indietro rispetto alle altre per quanto riguarda l’adozione AI, il che è dovuto in larga parte a questioni di privacy e alla specificità dei dati, alle limitazioni del budget e ai problemi relativi agli accessi.

    I tre principali casi di utilizzo dell’intelligenza artificiale in campo sanitario riguardano l’imaging medico, la patologia digitale e la genomica. L’utilizzo dell’intelligenza artificiale in questi casi non solo ha portato a migliorare la velocità e l’accuratezza delle diagnosi, ma ha anche permesso l’individuazione precoce di importanti malattie quali il tumore al seno.

    Anche se queste tecnologie sono da considerarsi indipendenti, vengono spesso impiegate insieme come una parte dell’esteso flusso di lavoro diagnostico: l’imaging medico porta alla biopsia e l’esame del risultato della biopsia da parte di un patologo apre la strada agli studi genomici, che vengono utilizzati per sviluppare un piano terapeutico personalizzato sulla base del genoma del paziente o dei marcatori genetici osservati.

    Imaging Medico

    L’imaging medico è al centro di notevoli spinte che puntano a incrementarne l’efficienza. La popolazione dei pazienti sta invecchiando e vive condizioni in cui l’imaging è sempre più necessario, ma la dimensione del personale nei reparti di radiologia è piatta e in alcuni casi si sta restringendo. Molti paesi hanno carenza di radiologi, soprattutto nelle aree rurali. Nel terzo mondo, la mancanza di competenza in questo campo è un problema molto diffuso.

    Mentre il ruolo dell’intelligenza artificiale all’interno del flusso di lavoro di imaging medico è importante per il progresso generale, è l’utilizzo dell’intelligenza artificiale per l’analisi e la diagnostica delle immagini – la diagnostica computerizzata – ad aver attirato maggiormente l’attenzione. I modelli di deep learning sono stati sviluppati per un’ampia gamma di condizioni, con la promessa di migliorare la velocità e l’accuratezza delle analisi e di permettere una diagnosi precoce delle malattie. Le aree di studio che spiccano maggiormente includono l’individuazione di noduli polmonari, del tumore al cervello, della sclerosi multipla, del tumore al seno e alla prostata.

    Patologia Digitale

    Nel campo della patologia si sta vivendo una situazione molto simile a quella dell’imaging medico: la domanda di servizi in questo campo sta aumentando più velocemente rispetto al numero dei patologi. Ciò significa che i laboratori di patologia devono diventare più efficienti per poter trattare più casi in meno tempo.

    Nella patologia tradizionale, i vetrini vengono preparati con un campione di tessuto del paziente e poi rivisti da un patologo con un microscopio ad alto ingrandimento. Questo processo manuale può essere soggetto a errori e può portare ad uno spreco di tempo, soprattutto se il patologo necessita di consultarsi con esperti esterni.

    Sebbene la patologia computazionale somigli per molti aspetti all’intelligenza artificiale nell’imaging medico, ci sono molte differenze sostanziali. In generale, la patologia digitale si trova molti anni indietro rispetto all’imaging medico in termini di maturità nell’applicazione dell’AI. Questo potrebbe essere in parte dovuto al fatto che la patologia digitale è stata relativamente lenta da digitalizzare. Nell’imaging medico, la digitalizzazione ha offerto un percorso chiaro verso la riduzione dei costi e l’incremento dell’efficienza del flusso di lavoro. In ogni caso, la patologia digitale aggiunge la tecnologia digitale ai processi fisici esistenti rendendo così i vantaggi economici meno chiari ed evidenti.

    Genomica

    L’intelligenza artificiale può aiutare a gestire l’enorme quantità di dati e di informazioni genetiche. La sfida fondamentale della genomica risiede nel prendere tutti i dati delle sequenze e scoprire quali differenze sono rilevanti. Quale variante di gene o combinazione di geni contribuisce a determinate malattie?

    La gestione dei dati nella genomica rappresenta una sfida più difficile rispetto a quella dell’imaging medico o della patologia digitale. Con risultati di sequenziamento per un singolo individuo che portano fino a 1 terabyte, il sequenziamento dell’intero genoma crea problemi di gestione dei dati sia nella ricerca che in ambito clinico. Anche se i formati dei file utilizzati in genomica sono standardizzati, non esiste un equivalente di un sistema di archiviazione e comunicazione delle immagini (PACS) o di un archivio neutro di vendor neutral archive (VNA) per la gestione dei dati genetici.

    Il contributo di NetApp

    Le soluzioni cloud di NetApp sono state scelte da numerose aziende che sfruttano l’intelligenza artificiale per produrre innovazione nell’healthcare. Ad esempio, Wuxi Next Code, la società di analisi e piattaforma per i dati genomici leader a livello mondiale, si avvale di NetApp Cloud Volumes per semplificare l’implementazione e ottimizzare la gestione delle applicazioni data-driven, con il toolset basato sull’intelligenza artificiale dell’azienda che è progettato per analizzare in modo efficiente enormi quantità di dati genomici e clinici. Allo stesso modo, grazie all’All-Flash e alle soluzioni di Big Data Analytics di NetApp, il Mt. San Rafael Hospital, in Colorado, ha accelerato l’accesso ai dati e si serve di informazioni predittive per migliorare la vita dei pazienti; l’azienda biofarmaceutica AstraZeneca ha deciso di fare affidamento sui dati per progredire nella ricerca e sviluppo dei farmaci, accelerare il time to market e identificare i trattamenti personalizzati per ogni paziente.

    intelligenza artificiale NetApp
    Share. Facebook LinkedIn Twitter WhatsApp Telegram Reddit Email

    Correlati

    Veeva R&D and Quality Summit 2025: la voce ai protagonisti

    13 Giugno 2025

    BIO International Convention: il biotech italiano vola a Boston

    12 Giugno 2025

    IA e nuove tecnologie nella Sanità: tra innovazione e sfide di sicurezza

    10 Giugno 2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    BitMATv – I video di BitMAT
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Transizione 5.0: vuoi il 45% sui software?
    Stormshield: Zero Trust pilastro della security aziendale
    Più Letti

    Veeva R&D and Quality Summit 2025: la voce ai protagonisti

    13 Giugno 2025

    MioDottore Awards 2025: ecco i 43 medici più stimati d’Italia

    13 Giugno 2025

    Riabilitazione visiva post-ictus: via al progetto sperimentale SCRiCaViPS

    13 Giugno 2025

    ab medica porta dialogo e innovazione al Convegno Nazionale AIIC

    12 Giugno 2025
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    NAVIGAZIONE
    • Cura
    • Tendenze
    • Riabilitazione
    • No Limits
    • Incontri
    Ultime

    Veeva R&D and Quality Summit 2025: la voce ai protagonisti

    13 Giugno 2025

    MioDottore Awards 2025: ecco i 43 medici più stimati d’Italia

    13 Giugno 2025

    Riabilitazione visiva post-ictus: via al progetto sperimentale SCRiCaViPS

    13 Giugno 2025
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati Iscrizione al tribunale di Milano n° 295 del 28-11-2018 Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.