• BitMAT
  • BitMATv
  • Top Trade
  • Linea EDP
  • Itis Magazine
  • Industry 5.0
  • Sanità Digitale
  • ReStart in Green
  • Contattaci
Close Menu
Sanità DigitaleSanità Digitale
    Facebook X (Twitter) LinkedIn Instagram Vimeo RSS
    giovedì, 4 Settembre
    Trending
    • Centro Analysis installa la Risonanza Magnetica 3T di GE HealthCare
    • “AI Meets Medicine”: l’Hackathon di Elty che unisce tecnologia e medicina
    • Engineering: finanziamento IPCEI da 64 milioni per lo sviluppo di Opoh
    • IQVIA e Veeva: partnership a lungo termine in ambito clinico e commerciale
    • Giocare ai videogiochi: consigli per preservare la propria salute
    • Payback dispositivi medici: approvata riduzione al 25%, ma non basta
    • 3D Systems verso nuove frontiere della medicina rigenerativa
    • ZenVet: boom di cure veterinarie a domicilio (+65%)
    Facebook X (Twitter) LinkedIn Instagram Vimeo RSS
    Sanità DigitaleSanità Digitale
    • Home
    • Cura
    • Tendenze
    • Riabilitazione
    • No Limits
    • Incontri
    Sanità DigitaleSanità Digitale
    Sei qui:Home»Cura»Fecondazione assistita: cure personalizzate grazie all’intelligenza artificiale

    Fecondazione assistita: cure personalizzate grazie all’intelligenza artificiale

    By Redazione BitMAT8 Novembre 20232 Mins Read
    Facebook LinkedIn Twitter WhatsApp Telegram Reddit Email

    L’intelligenza artificiale può essere un supporto efficace per personalizzare le cure nei trattamenti di fecondazione assistita

    La dott.ssa Alessandra Vucetich-ai-fecondazione-assistita
    La dott.ssa Alessandra Vucetich

    Durante il congresso annuale 2023 di ESHRE, la ricercatrice Eugin Nuria Correa Mañas ha presentato uno studio sviluppato in collaborazione con l’Istituto di ricerca sull’intelligenza artificiale CSIC dell’Università di Barcellona sull’applicazione del machine learning nella definizione dei dosaggi di farmaci per i trattamenti di fecondazione assistita.

    La ricerca ha analizzato, nello specifico, l’applicazione dei metodi di apprendimento automatico nella stimolazione ovarica, ossia nella terapia farmacologica necessaria per ottenere gli ovociti maturi da impiegare nelle tecniche di riproduzione assistita. Sono stati considerati 2.173 cicli effettuati tra gennaio 2011 e dicembre 2019 ed è stato sviluppato e validato un modello clinico con ulteriori 273 cicli eseguiti tra gennaio 2020 e settembre 2021.

    “Abbiamo sviluppato un modello solido, che, nei test preclinici, ha garantito risultati migliori rispetto all’adozione della sola pratica clinica standard. L’utilizzo dell’intelligenza artificiale nella definizione del dosaggio ormonale promette di migliorare i trattamenti di fecondazione assistita, fornendo raccomandazioni accurate e personalizzate sul dosaggio dell’FSH, l’ormone follicolo-stimolante, da somministrare” racconta Nuria Correa Mañas.

    Inoltre, grazie a questa tecnologia, l’11,6% dei pazienti per la fecondazione assistita appartenenti al campione ha potuto ottimizzare i trattamenti. Senza il suo utilizzo, i risultati non sarebbero stati migliorabili.

    “La prescrizione di una terapia farmacologica personalizzata è da sempre un punto di massima attenzione per Eugin. Investiamo costantemente per incrementare le nostre conoscenze in questo ambito e l’accuratezza delle terapie, con il fine di continuare a migliorare l’esito dei trattamenti” afferma la dottoressa Alessandra Vucetich, specialista in Ginecologia e Ostetricia, membro dell’equipe medica del Centro di Procreazione Medicalmente Assistita della Casa di Cura La Madonnina di Milano, parte del Gruppo San Donato, che opera in partnership con Clinica Eugin.

     

    fecondazione assistita intelligenza artificiale (AI)
    Share. Facebook LinkedIn Twitter WhatsApp Telegram Reddit Email

    Correlati

    Centro Analysis installa la Risonanza Magnetica 3T di GE HealthCare

    3 Settembre 2025

    “AI Meets Medicine”: l’Hackathon di Elty che unisce tecnologia e medicina

    2 Settembre 2025

    IQVIA e Veeva: partnership a lungo termine in ambito clinico e commerciale

    25 Agosto 2025
    Newsletter

    Iscriviti alla Newsletter per ricevere gli aggiornamenti dai portali di BitMAT Edizioni.

    BitMATv – I video di BitMAT
    ExpertBook P5, il notebook con l’AI integrata
    La tua fabbrica è resiliente?
    Legrand Data Center al Data Center Nation per parlare del data center del futuro!
    Snom: focus su tecnologia e partner
    Cumulabilità Transizione 5.0 e ZES: i vantaggi del Litio
    Più Letti

    Centro Analysis installa la Risonanza Magnetica 3T di GE HealthCare

    3 Settembre 2025

    “AI Meets Medicine”: l’Hackathon di Elty che unisce tecnologia e medicina

    2 Settembre 2025

    Engineering: finanziamento IPCEI da 64 milioni per lo sviluppo di Opoh

    25 Agosto 2025

    IQVIA e Veeva: partnership a lungo termine in ambito clinico e commerciale

    25 Agosto 2025
    Chi Siamo
    Chi Siamo

    BitMAT Edizioni è una casa editrice che ha sede a Milano con una copertura a 360° per quanto riguarda la comunicazione online ed offline rivolta agli specialisti dell'lnformation & Communication Technology.

    Facebook X (Twitter) Instagram Vimeo LinkedIn RSS
    NAVIGAZIONE
    • Cura
    • Tendenze
    • Riabilitazione
    • No Limits
    • Incontri
    Ultime

    Centro Analysis installa la Risonanza Magnetica 3T di GE HealthCare

    3 Settembre 2025

    “AI Meets Medicine”: l’Hackathon di Elty che unisce tecnologia e medicina

    2 Settembre 2025

    Engineering: finanziamento IPCEI da 64 milioni per lo sviluppo di Opoh

    25 Agosto 2025
    • Contattaci
    • Cookies Policy
    • Privacy Policy
    • Redazione
    © 2012 - 2025 BitMAT Edizioni - P.Iva 09091900960 - tutti i diritti riservati Iscrizione al tribunale di Milano n° 295 del 28-11-2018 Testata giornalistica iscritta al ROC

    Type above and press Enter to search. Press Esc to cancel.